The Impact of Standards on Determining the Approvability of Multiplexed RNA-based In Vitro Diagnostic Tests

Maria Chan, Ph.D.
Office of *In Vitro* Diagnostic Device
Evaluation and Safety
Center for Devices and Radiological Health

Device Classification

- Class I devices general control requirements
- Class II devices special controls and general control requirements.
- Class III devices high risk with no established predicates, or raises new types of questions of safety and effectiveness

Device Classification (cont.)

General controls:

- registration and listing
- Good Manufacturing Practices (GMPs)
- premarket notification (510(k)), unless exempt
- prohibition of adulterated, misbranded, or banned devices
- record keeping
- reporting of device failures

Device Classification (cont.)

Special controls:

- -performance standards
- -postmarket surveillance
- -patient registries
- -guidelines/guidances
- -design control
- -tracking requirements

Pathways to the Market

- IVD may be exempt
- Premarket notification 510(k)
- Premarket approval PMA
- Product development protocol PDP
- Humanitarian device exemption HDE
- Analyte specific reagent ASR

Major Elements of a Submission

- Intended use/indications for use
- Performance characteristics
 - Analytical
 - Clinical
- Labeling (package insert)

Intended Use/Indications for Use

- Determine the type of review
- Determine the data requirements
- Describes what the device measures and why and the target population(s)

- Characterization of components
 - Array
 - Controls
 - Calibrators (Quantitative)
 - Signal detection systems
 - Instruments e.g. robotic arrayers, scanners, imagers, thermal cyclers etc.
 - Instrument software

- Characterization of components
 - Array
 - Design and fabrication e.g. platform type, surface type, composition and spatial layout, number of elements (spot), number of replicates, etc.
 - Spot elements e.g. clone, sequence, PCR primer pairs, probe length, gene name, etc.
 - Built-in controls e.g. housekeeping genes, etc.

- Characterization of components
 - Controls
 - Calibrators (Quantitative)
 - Signal detection systems
 - Instruments e.g. robotic arrayers, scanners, imagers, thermal cyclers etc.
 - Instrument software

Samples

- Type and source
- Storage and handling conditions
- Extraction, purification, amplification (if needed) and labeling
- Sample quality assessment

- Reproducibility within chip, between chips, day-to day, between sites, inter-operators, lot-to-lot?
- Accuracy
- Assay sensitivity
- Assay specificity and interfering substances
- Data processing and statistical analysis
- Stability of reagents and chip

Performance Characteristics - Clinical

• Clinical sensitivity – the ability of the test to correctly identify the presence of disease.

• Clinical specificity – the ability of the test to correctly identify the absence of disease.

Current Use of Standards

- Reference methods
- Reference materials/standards
 - Limited
 - Source WHO, NIST, CDC, NIH etc.
 - Calibrators and controls
 - Traceability
 - Assign values
 - Standardize and control assay performance

Examples of Standards

- Reference materials
 - WHO PSA standard
 - WHO RF standard
 - NIST standards for therapeutic drugs
 - Various infectious disease reference materials (CDC, WHO and others)
 - NIH cytokine standards

Microarray Controls

- Internal controls
 - Housekeeping genes
 - Synthetic RNA e.g. Oncoquant (CBER)
- Pooled RNA from cell lines
- Pooled RNA from test samples
- RNA and oligonucleotides from plants and bacteria

Synthetic RNA

- Internal standard
- Unique sequences (can be customized)
- Controls for reverse transcription, labeling, hybridization, instrumentation
- Quantify RNA abundance
- Assess RNA quality of sample
- Stable

Oncoquant

B. RNA QUANTIFICATION

plasmid DNA

Scheuermann, R.H., and Bauer, S.R. 1993. PCR-based quantification of multiple mRNA species: a method for the analysis of oncogene expression. Methods in Enzymology 218: 446-473.

Universal RNA Reference

- Pooled human cell lines
 - Normal, tumor or combination?
 - How many cell types?
 - How many cell lines?
 - Availability? Source?
 - Quality of cell lines?
 - Batch-to-batch variability

Next Step